Abstract

Polyunsaturated fatty acids (PUFA) have a role in many physiological processes, including energy production, modulation of inflammation, and maintenance of cell membrane integrity. High plasma PUFA concentrations have been shown to have beneficial effects on cardiovascular disease and mortality. To identify genetic contributors of plasma PUFA concentrations, we conducted a genome-wide association study of plasma levels of six omega-3 and omega-6 fatty acids in 1,075 participants in the InCHIANTI study on aging. The strongest evidence for association was observed in a region of chromosome 11 that encodes three fatty acid desaturases (FADS1, FADS2, FADS3). The SNP with the most significant association was rs174537 near FADS1 in the analysis of arachidonic acid (AA; p = 5.95×10−46). Minor allele homozygotes had lower AA compared to the major allele homozygotes and rs174537 accounted for 18.6% of the additive variance in AA concentrations. This SNP was also associated with levels of eicosadienoic acid (EDA; p = 6.78×10−9) and eicosapentanoic acid (EPA; p = 1.07×10−14). Participants carrying the allele associated with higher AA, EDA, and EPA also had higher low-density lipoprotein (LDL-C) and total cholesterol levels. Outside the FADS gene cluster, the strongest region of association mapped to chromosome 6 in the region encoding an elongase of very long fatty acids 2 (ELOVL2). In this region, association was observed with EPA (rs953413; p = 1.1×10−6). The effects of rs174537 were confirmed in an independent sample of 1,076 subjects participating in the GOLDN study. The ELOVL2 SNP was associated with docosapentanoic and DHA but not with EPA in GOLDN. These findings show that polymorphisms of genes encoding enzymes in the metabolism of PUFA contribute to plasma concentrations of fatty acids.

Highlights

  • Polyunsaturated fatty acids (PUFA) refer to the class of fatty acids with multiple desaturations in the aliphatic tail

  • Linoleic acid (LA) constituted the highest proportion of total fatty acids followed by arachidonic acid (AA) (Table 1) The narrow heritability was highest for AA (37.7%) followed by linoleic acid (LA) (35.9%), eicosadienoic acid (EDA, 33.3%), alpha-linolenic acid (ALA, 28.1%), eicosapentanoic acid (EPA, 24.4%), and docosahexanoic acid (DHA,12.0%)

  • We demonstrated that polymorphisms in the FADS cluster are the strongest determinants of plasma and erythrocyte fatty acid concentrations, explaining up to 18.6% of the additive variance in plasma AA levels

Read more

Summary

Introduction

Polyunsaturated fatty acids (PUFA) refer to the class of fatty acids with multiple desaturations in the aliphatic tail. Short chain PUFA (up to 16 carbons) are synthesized endogenously by fatty acid synthase. Long chain PUFA are fatty acids of 18 carbons or more in length with two or more double bonds. Long chain PUFA are either directly absorbed from food or synthesized from the two essential fatty acids linoleic acid (LA; 18:2n-6) and alpha-linolenic acid (ALA; 18:3n-3) through a series of desaturation and elongation processes [1]. PUFA modulate inflammatory response through a number of different mechanisms including modulation of cyclooxygenase and lipoxigenase activity [2]. Since n-3 and n-6 fatty acids compete for the same metabolic pathway and produce eicosanoids with differing effects, it has been theorized that the balance of the two classes of PUFA may be important in the pathogenesis of inflammatory diseases

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.