Abstract

Anthracnose is a seed-borne disease of common bean (Phaseolus vulgaris L.) caused by the fungus Colletotrichum lindemuthianum, and the pathogen is cosmopolitan in distribution. The objectives of this study were to identify new sources of anthracnose resistance in a diverse panel of 230 Andean beans comprised of multiple seed types and market classes from the Americas, Africa, and Europe, and explore the genetic basis of this resistance using genome-wide association mapping analysis (GWAS). Twenty-eight of the 230 lines tested were resistant to six out of the eight races screened, but only one cultivar Uyole98 was resistant to all eight races (7, 39, 55, 65, 73, 109, 2047, and 3481) included in the study. Outputs from the GWAS indicated major quantitative trait loci (QTL) for resistance on chromosomes, Pv01, Pv02, and Pv04 and two minor QTL on Pv10 and Pv11. Candidate genes associated with the significant SNPs were detected on all five chromosomes. An independent QTL study was conducted to confirm the physical location of the Co-1 locus identified on Pv01 in an F4:6 recombinant inbred line (RIL) population. Resistance was determined to be conditioned by the single dominant gene Co-1 that mapped between 50.16 and 50.30 Mb on Pv01, and an InDel marker (NDSU_IND_1_50.2219) tightly linked to the gene was developed. The information reported will provide breeders with new and diverse sources of resistance and genomic regions to target in the development of anthracnose resistance in Andean beans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call