Abstract

The leopard coral grouper (Plectropomus leopardus) is a coral reef fish species that exhibits rapid and diverse color variation. However, the presence of melanoma and the high proportion of individuals displaying black color in artificial breeding have led to reduced economic and ornamental value. To pinpoint single nucleotide polymorphisms (SNPs) and potential genes linked to the black pigmentation characteristic in this particular species, This study gathered a cohort of 360 specimens from diverse origins and conducted a comprehensive genome-wide association analysis (GWAS) employing whole-genome resequencing. As a result, 57 SNPs related to the black skin trait were identified, and a grand total of 158 genes were annotated within 50 kb of these SNPs. Subsequently, GWAS was applied to three populations (LED, QHH, and QHL), and the corresponding results were compared with the analysis results of the total population. The results of the four GWAS models showed significant enrichment in Rap1 signaling pathway, melanin biosynthesis, metabolic pathways, tyrosine metabolism, cAMP signaling pathway, AMPK signaling pathway, PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, HIF-1 signaling pathway, Ras signaling pathway, MAPK signaling pathway, etc. (p < 0.05), which were mainly associated with eleven genes (POL4, MET, E2F2, COMT, ZBED1, TYRP2, FOXP2, THIKA, LORF2, MYH16 and SOX2). Significant differences (p < 0.05) were observed in the expression of all 11 genes in the dorsal skin tissue, in 10 genes except COMT in the ventral skin tissue, and in all 11 genes in the caudal fin tissue. These findings imply that the control of body color in the P. leopardus is the result of the joint action of multiple genes and signaling pathways. These findings will contribute to a more profound comprehension of the genetic attributes that underlie the development of black skin in the vibrant P. leopardus, thus furnishing a theoretical foundation for genetic enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call