Abstract

Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N = 130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across hundreds of biomarkers, health, and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from the UK Biobank (UKB; N = 334,659). We observed consistent positive genetic correlations with substance use and obesity in both cohorts. Other genetic correlations were discrepant, including positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in the UKB, and genetic correlations with cognition that were negative in 23andMe but positive in the UKB. Phenome-wide association study using polygenic scores of coffee intake derived from 23andMe or UKB summary statistics also revealed consistent associations with increased odds of obesity- and red blood cell-related traits, but all other associations were cohort-specific. Our study shows thatthe genetics of coffee intake associate with substance use and obesity across cohorts, but also that GWAS performed in different populations could capture cultural differences in the relationship between behavior and genetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.