Abstract

Genome-wide association studies have been successful in identifying genes involved in polygenic traits and are valuable for crop improvement. Tomato (Solanum lycopersicum) is a major crop and is highly appreciated worldwide for its health value. We used a core collection of 163 tomato accessions composed of S. lycopersicum, S. lycopersicum var cerasiforme, and Solanum pimpinellifolium to map loci controlling variation in fruit metabolites. Fruits were phenotyped for a broad range of metabolites, including amino acids, sugars, and ascorbate. In parallel, the accessions were genotyped with 5,995 single-nucleotide polymorphism markers spread over the whole genome. Genome-wide association analysis was conducted on a large set of metabolic traits that were stable over 2 years using a multilocus mixed model as a general method for mapping complex traits in structured populations and applied to tomato. We detected a total of 44 loci that were significantly associated with a total of 19 traits, including sucrose, ascorbate, malate, and citrate levels. These results not only provide a list of candidate loci to be functionally validated but also a powerful analytical approach for finding genetic variants that can be directly used for crop improvement and deciphering the genetic architecture of complex traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.