Abstract

Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici and powdery mildew (PM) caused by Blumeria graminis f.sp tritici (Bgt) are among the forefront foliar diseases of wheat that lead to a significant loss of grain yield and quality. Resistance breeding aimed at developing varieties with inherent resistance to STB and PM diseases has been the most sustainable and environment-friendly approach. In this study, 175 winter wheat landraces and historical cultivars originated from the Nordic region were evaluated for adult-plant resistance (APR) to STB and PM in Denmark, Estonia, Lithuania, and Sweden. Genome-wide association study (GWAS) and genomic prediction (GP) were performed based on the adult-plant response to STB and PM in field conditions using 7,401 single-nucleotide polymorphism (SNP) markers generated by 20K SNP chip. Genotype-by-environment interaction was significant for both disease scores. GWAS detected stable and environment-specific quantitative trait locis (QTLs) on chromosomes 1A, 1B, 1D, 2B, 3B, 4A, 5A, 6A, and 6B for STB and 2A, 2D, 3A, 4B, 5A, 6B, 7A, and 7B for PM adult-plant disease resistance. GP accuracy was improved when assisted with QTL from GWAS as a fixed effect. The GWAS-assisted GP accuracy ranged within 0.53–0.75 and 0.36–0.83 for STB and PM, respectively, across the tested environments. This study highlights that landraces and historical cultivars are a valuable source of APR to STB and PM. Such germplasm could be used to identify and introgress novel resistance genes to modern breeding lines.

Highlights

  • Septoria tritici blotch (STB) and powdery mildew (PM) caused by fungal pathogens Zymoseptoria tritici and Blumeria graminis f.sp tritici (Bgt), respectively, are the major devastating foliar diseases that cause significant yield loss in wheat-growing regions

  • The growth of pathogen strains with resistance/insensitivity to the existing widely used fungicides (Heick et al, 2017) coupled with the worrisome environmental impact of fungicide application critically demands resistance breeding aimed at developing varieties with inherent resistance to STB and PM diseases

  • The phenotypic data indicated a significant variation between genotypes for adult-plant disease resistance response to STB and PM

Read more

Summary

Introduction

Septoria tritici blotch (STB) and powdery mildew (PM) caused by fungal pathogens Zymoseptoria tritici and Blumeria graminis f.sp tritici (Bgt), respectively, are the major devastating foliar diseases that cause significant yield loss in wheat-growing regions. These fungal diseases can significantly reduce the yield and quality of the wheat crop under conducive environmental conditions. GWAS With GP for Wheat (Singh et al, 2016; Figueroa et al, 2018; Jalli et al, 2020) Both STB and PM diseases are major concerns for sustainable wheat production in European countries around the Baltic Sea (Chawade et al, 2018). Decreasing the negative effect of climate change by reducing the spread of plant diseases is immense, and in this case, landraces are the ultimate genetic resources for disease resistance breeding (Olesen et al, 2011)

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call