Abstract
Availability of genome sequence of different legume species has provided an opportunity to characterize the abundance, distribution, and divergence of canonical intact long terminal retrotransposons (In-LTR-RT) superfamilies. Among seven legume species, Arachis ipaensis (Aip) showed the highest number of full-length canonical In-LTR-RTs (3325), followed by Glycine max (Gma, 2328), Vigna angularis (Van, 1625), Arachis durensis (Adu, 1348), Lotus japonicus (Lja, 1294), Medicago truncatula (Mtr, 788), and Circer arietinum (Car, 124). Divergence time analysis demonstrated that the amplification timeframe of LTR-RTs dramatically varied in different families. The average insertion time of Copia element varied from 0.51 (Van) to 1.37 million years ago (Mya) (Adu, and Aip), whereas that of Gypsy was between 0.22 (Mtr) and 1.82 Mya (Adu). Bayesian phylogenetic tree analysis suggested that the 1397 and 1917 reverse transcriptase (RT) domains of Copia and Gypsy families of the seven legume species were clustered into 7 and 14 major groups, respectively. The highest proportion (approximately 94.79-100%) of transposable element (TE)-associated genes assigned to pathways was mapped to metabolism-related pathways in all species. The results enabled the structural understanding of full-length In-LTR-RTs and will be valuable resource for the further study of the impact of TEs on gene structure and expression in legume species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.