Abstract

Genes of the LPPT (lipid phosphatase/phosphotransferase) family play important roles in lipid phosphorous transfer and triacylglycerol accumulation in plants. To provide overviews of the plant LPPT family and their overall relationships, here we carried out genome-wide identifications and analyses of plant LPPT family members. A total of 643 putative LPPT genes were identified from 48 sequenced plant genomes, among which 205 genes from 14 plants were chosen for further analyses. Plant LPPT genes belonged to three distinctive groups, namely the LPT (lipid phosphotransfease), LPP (lipid phosphatase), and pLPP (plastidic lipid phosphotransfease) groups. Genes of the LPT group could be further partitioned into three groups, two of which were only identified in terrestrial plants. Genes in the LPP and pLPP groups experienced duplications in early stages of plant evolution. Among 17 Zea mays LPPT genes, divergence of temporal-spatial expression patterns was revealed based on microarray data analysis. Peptide sequences of plant LPPT genes harbored different conserved motifs. A test of Branch Model versus One-ratio Model did not support significant selective pressures acting on different groups of LPPT genes, although quite different nonsynonymous evolutionary rates and selective pressures were observed. The complete picture of the plant LPPT family provided here should facilitate further investigations of plant LPPT genes and offer a better understanding of lipid biosynthesis in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.