Abstract

BackgroundWRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis.ResultsWe identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs.ConclusionsFifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.

Highlights

  • WRKY proteins are a large family of transcriptional regulators in higher plant

  • All CDSs of 32 CsWRKY genes have been submitted to GenBank and their accession numbers in GenBank were showed on Table 1

  • Assuming that there were no duplication events in CsWRKY genes and that positive selection is associated with duplication of WRKY genes as we described here, the extensive positive selection events were probably followed by the group 3 WRKY gene duplication events

Read more

Summary

Introduction

WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. WRKY proteins constitute a large family of transcription factors that are involved in various physiological processes. Proteins in this family contain at least one highly conserved signature domain of about 60 amino acid residues, which includes the conserved WRKYGQK sequence followed by a zinc finger motif, located in the C-terminal region [1]. Group 3 proteins have a single WRKY domain, but their zinc-finger-like motif is C2-H-C [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call