Abstract
In this study, a maize inbred line with a strong capacity to induce embryonic callus, 18-599R, was used to analyze the transcription factors expressed during embryonic callus formation. A total of 1180 transcription factors were found to be expressed during three key stages of callus induction. Of these, compared with control, 361, 346 and 328 transcription factors were significantly downregulated during stages I, II and III, respectively. In contrast, 355, 372 and 401 transcription factors (TFs) were upregulated during the respective stages. We constructed a transcription factor-mediated regulatory network and found that plant hormone signal transduction was the pathway most significantly enriched among TFs. This pathway includes 48 TFs regulating cell enlargement, cell differentiation, cell division and cell dedifferentiation via the response to plant hormones. Through real-time polymerase chain reaction (PCR) and degradome sequencing, we identified 23 transcription factors that are regulated by miRNA. Through further analysis, ZmMYB138, a member of the MYB transcription factor family localized in the nucleus, was verified to promote embryonic callus formation in the maize embryo through GA signal transduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.