Abstract

In plants, nitrate acts not only as a signaling molecule that affects plant development but also as a nutrient. The development of plant roots, which directly absorb nutrients, is greatly affected by nitrate supply. Alternative gene splicing plays a crucial role in the plant stress response by increasing transcriptome diversity. The effects of nitrate supply on alternative splicing (AS), however, have not been investigated in soybean roots. We used high-quality high-throughput RNA-sequencing data to investigate genome-wide AS events in soybean roots in response to various levels of nitrate supply. In total, we identified 355 nitrate-responsive AS events between optimal and high nitrate levels (NH), 335 nitrate-responsive AS events between optimal and low nitrate levels (NL), and 588 nitrate-responsive AS events between low and high nitrate levels (NLH). RI and A3SS were the most common AS types; in particular, they accounted for 67% of all AS events under all conditions. This increased complex and diversity of AS events regulation might be associated with the soybean response to nitrate. Functional ontology enrichment analysis suggested that the differentially splicing genes were associated with several pathways, including spliceosome, base excision repair, mRNA surveillance pathway and so on. Finally, we validated several AS events using reverse transcription–polymerase chain reaction to confirm our RNA-seq results. In summary, we characterized the features and patterns of genome-wide AS in the soybean root exposed to different nitrate levels, and our results revealed that AS is an important mechanism of nitrate-response regulation in the soybean root.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.