Abstract

BackgroundNAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood.Principal FindingsWe performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity and functional divergence of the NADK family in plants.ConclusionsThese findings will facilitate further studies of the NADK family and provide valuable information for functional validation of this family in plants.

Highlights

  • NAD(H) and NADP(H) are crucial coenzymes and play important and distinguishable roles in all living organisms [1]

  • A hidden Markov model (HMM) search was performed with the obtained sequences and 74 NAD(H) kinase (NADK) homologs were identified (Figure 1, Table S1)

  • Only one NADK gene was identified per genome in the cyanophytes (Acaryochloris marina MBIC11017 and Prochlorococcus marinus MIT 9301) and bacteria (E. coli K-12), outgroup (Figure 1)

Read more

Summary

Introduction

NAD(H) and NADP(H) are crucial coenzymes and play important and distinguishable roles in all living organisms [1]. NAD(H) kinase (NADK) is the key enzyme in the de novo biosynthesis of NADP(H), catalyzing the transfer of a phosphoryl group from ATP to NAD(H), and plays an important role in the regulation of intracellular NAD(H)/NADP(H) balance for NADP(H)-based metabolic pathways. NADK genes have been found in most living organisms, including Archaea, eubacteria and eukaryotes, except for the intracellular parasite Chlamydia trachomatis [3]. NADK genes have been cloned from a wide variety of species, including Archaea (Methanococcus jannaschii [4]), eubacteria (Mycobacterium tuberculosis [5]), Escherichia coli [6], yeast (Saccharomyces cerevisiae [7,8]), humans (Homo sapiens [9]) and plants (Arabidopsis thaliana [10,11,12]). Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.