Abstract

BackgroundHemicelluloses are a diverse group of complex, non-cellulosic polysaccharides, which constitute approximately one-third of the plant cell wall and find use as dietary fibres, food additives and raw materials for biofuels. Genes involved in hemicellulose synthesis have not been extensively studied in small grain cereals.ResultsIn efforts to isolate the sequences for the cellulose synthase-like (Csl) gene family from wheat, we identified 108 genes (hereafter referred to as TaCsl). Each gene was represented by two to three homeoalleles, which are named as TaCslXY_ZA, TaCslXY_ZB, or TaCslXY_ZD, where X denotes the Csl subfamily, Y the gene number and Z the wheat chromosome where it is located. A quarter of these genes were predicted to have 2 to 3 splice variants, resulting in a total of 137 putative translated products. Approximately 45% of TaCsl genes were located on chromosomes 2 and 3. Sequences from the subfamilies C and D were interspersed between the dicots and grasses but those from subfamily A clustered within each group of plants. Proximity of the dicot-specific subfamilies B and G, to the grass-specific subfamilies H and J, respectively, points to their common origin. In silico expression analysis in different tissues revealed that most of the genes were expressed ubiquitously and some were tissue-specific. More than half of the genes had introns in phase 0, one-third in phase 2, and a few in phase 1.ConclusionDetailed characterization of the wheat Csl genes has enhanced the understanding of their structural, functional, and evolutionary features. This information will be helpful in designing experiments for genetic manipulation of hemicellulose synthesis with the goal of developing improved cultivars for biofuel production and increased tolerance against various stresses.

Highlights

  • Hemicelluloses are a diverse group of complex, non-cellulosic polysaccharides, which constitute approximately one-third of the plant cell wall and find use as dietary fibres, food additives and raw materials for biofuels

  • Because of the resemblance of CslD genes with cellulose synthase A (CesA) genes and their probable role in cellulose synthesis, we focused on the TaCslD subfamily

  • Identification and classification of Csl gene family members in bread wheat Database searches for bread wheat using conserved pfam motifs PF00535 and PF03552, which are specific to the glycosyltransferase 2 (GT2) superfamily, resulted in the identification of 108 cellulose synthase-like (TaCsl) genes (Table 1)

Read more

Summary

Introduction

Hemicelluloses are a diverse group of complex, non-cellulosic polysaccharides, which constitute approximately one-third of the plant cell wall and find use as dietary fibres, food additives and raw materials for biofuels. Plant cell wall consists of three main polysaccharide fractions: cellulose, hemicellulose, and pectin, with lignin and proteins being the other two constituents. Grass walls contain mainly two of the three polysaccharide fractions with pectin being a rather minor constituent. Hemicelluloses are plant cell wall matrix polysaccharides that possess diverse linear or branched structures [1, 2]. These mainly encompass 1–4-β-glucan, 1,3;1,4-β-glucan, galactan, and glucomannan in grasses [3]. Hemicellulosic polysaccharide backbones in plants are made by the cellulose synthase-like (Csl) enzymes, which are members of a much larger superfamily of genes referred to as glycosyltransferase 2 (GT2) [5].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.