Abstract

The alteration of transcript structure contributes to transcriptome plasticity. In this study, we analyzed the genome-wide response of exon combination patterns to deficiencies in 12 different nutrients in Arabidopsis thaliana roots. RNA sequencing analysis and bioinformatics using a simulation survey revealed more than 600 genes showing varying exon combinations. The overlap between genes showing differential expression (DE) and genes showing differential exon combination (DC) was notably low. Additionally, gene ontology analysis showed that gene functions were not shared between the DE and DC genes, suggesting that the genes showing DC had different roles than those showing DE. Most of the DC genes were nutrient specific. For example, two homologs of the MYB transcription factor genes MYB48 and MYB59 showed differential alternative splicing only in response to low levels of potassium. Alternative splicing of those MYB genes modulated DNA-binding motifs, and MYB59 is reportedly involved in the inhibition of root elongation. Therefore, the increased abundance of MYB isoforms with an intact DNA-binding motif under low potassium may be involved in the active inhibition of root elongation. Overall, we provide global and comprehensive data for DC genes affected by nutritional deficiencies, which contribute to elucidating an unknown mechanism involved in adaptation to nutrient deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.