Abstract
Abiotic stresses adversely affect cellular homeostasis, impairing overall growth and development of plants. These initial stress signals activate downstream signalling processes, which, subsequently, activate stress-responsive mechanisms to re-establish homeostasis. Dehydrins (DHNs) play an important role in combating dehydration stress. Rice (Oryza sativa L.), which is a paddy crop, is susceptible to drought stress. As drought survival in rice might be viewed as a trait with strong evolutionary selection pressure, we observed DHNs in the light of domestication during the course of evolution. Overall, 65 DHNs were identified by a genome-wide survey of 11 rice species, and 3 DHNs were found to be highly conserved. The correlation of a conserved pattern of DHNs with domestication and diversification of wild to cultivated rice was validated by synonymous substitution rates, indicating that Oryza rufipogon and Oryza sativa ssp. japonica follow an adaptive evolutionary pattern; whereas Oryza nivara and Oryza sativa ssp. indica demonstrate a conserved evolutionary pattern. A comprehensive analysis of tissue-specific expression of DHN genes in japonica and their expression profiles in normal and PEG (poly ethylene glycol)-induced dehydration stress exhibited a spatiotemporal expression pattern. Their interaction network reflects the cross-talk between gene expression and the physiological processes mediating adaptation to dehydration stress. The results obtained strongly indicated the importance of DHNs, as they are conserved during the course of domestication.
Highlights
Plants effectively survive diverse and variable environments due to elasticity in their cellular metabolism, physiology, and development
Drought stress is posed by adverse environmental conditions, and surviving drought could be viewed as a trait that is more related to wild species and diversification
Our results demonstrated the change in folding pattern of drought-responsive protein (DHN) from O. rufipogon have evolved into intrinsically disordered proteins (IDPs), providing functional benefits, such as an increased interaction surface area and conformational flexibility to interact with several targets
Summary
Plants effectively survive diverse and variable environments due to elasticity in their cellular metabolism, physiology, and development. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.