Abstract

Some mammals breed throughout the year, while others breed only at certain times of year. These differences in reproductive behavior can be explained by evolution. We identified positively-selected genes in two sets of species with different degrees of relatedness including seasonal and non-seasonal breeding species, using branch-site models. After stringent filtering by sum of pairs scoring, we revealed that more genes underwent positive selection in seasonal compared with non-seasonal breeding species. Positively-selected genes were verified by cDNA mapping of the positive sites with the corresponding cDNA sequences. The design of the evolutionary analysis can effectively lower the false-positive rate and thus identify valid positive genes. Validated, positively-selected genes, including CGA, DNAH1, INVS, and CD151, were related to reproductive behaviors such as spermatogenesis and cell proliferation in non-seasonal breeding species. Genes in seasonal breeding species, including THRAP3, TH1L, and CMTM6, may be related to the evolution of sperm and the circadian rhythm system. Identification of these positively-selected genes might help to identify the molecular mechanisms underlying seasonal and non-seasonal reproductive behaviors.

Highlights

  • The environment can influence gene evolution and animal behaviors, including reproduction-related behaviors

  • After alignment using PRANK, 10,918 gene orthologs in the Distant-Species set and 12,485 in the Close-Species set were tested for positive selection signals using the codeML program in the PAML package [4], with the modified branch-site model [5]

  • The evolutionary analysis was designed to reduce the incidence of false-positive sites by sum of pairs (SP) filtering and cDNA mapping

Read more

Summary

Introduction

The environment can influence gene evolution and animal behaviors, including reproduction-related behaviors. Some mammals can breed throughout the year, while others only breed successfully at certain times of year. Such animals are defined as non-seasonal and seasonal breeding species, respectively. Temperature, and food supply can all influence the PLOS ONE | DOI:10.1371/journal.pone.0126736. Selected Genes in Seasonal and Non-Seasonal Breeding (SW20130802). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.