Abstract

BackgroundAuxin is an important hormone in plants and the PIN-FORMED (PIN) genes are essential to auxin distribution in growth and developmental processes of plants. Peanut is an influential cash crop, but research into PIN genes in peanuts remains limited.ResultsIn this study, 16 PIN genes were identified in the genome of cultivated peanut, resolving into four subfamilies. All PIN genes were predicted to be located in the plasma membrane and a subcellular location experiment confirmed this prediction for eight of them. The gene structure, cis-elements in the promoter, and evolutionary relationships were elucidated, facilitating our understanding of peanut PINs and their evolution. In addition, the expression patterns of these PINs in various tissues were analyzed according to a previously published transcriptome dataset and qRT-PCR, which gave us a clear understanding of the temporal and spatial expression of PIN genes in different growth stages and different tissues. The expression trend of homologous genes was similar. AhPIN2A and AhPIN2B exhibited predominant expression in roots. AhPIN1A-1 and AhPIN1B-1 displayed significant upregulation following peg penetration, suggesting a potential close association with peanut pod development. Furthermore, we presented the gene network and gene ontology enrichment of these PINs. Notably, AhABCB19 exhibited a co-expression relationship with AhPIN1A and AhPIN1B-1, with all three genes displaying higher expression levels in peanut pegs and pods. These findings reinforce their potential role in peanut pod development.ConclusionsThis study details a comprehensive analysis of PIN genes in cultivated peanuts and lays the foundation for subsequent studies of peanut gene function and phenotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.