Abstract

BackgroundMYB transcription factors are a kind of DNA binding protein that can specifically interact with the promoter region. Members of MYB TFs are widely involved in plant growth and development, secondary metabolism, stress response, and hormone signal transduction. However, there is no report of comprehensive bioinformatics analysis on the MYB family of Casuarina equisetifolia.ResultsIn this study, bioinformatics methods were used to screen out 182 MYB transcription factors from the Casuarina equisetifolia genome database, including 69 1R-MYB, 107 R2R3-MYB, 4 R1R2R3-MYB, and 2 4R-MYB. The C. equisetifolia R2R3-MYB genes were divided into 29 groups based on the phylogenetic topology and the classification of the MYB superfamily in Arabidopsis thaliana, while the remaining MYB genes (1R-MYB, R1R2R3-MYB, and 4R-MYB) was divided into 19 groups. Moreover, the conserved motif and gene structure analysis shown that the members of the CeqMYBs were divided into the same subgroups with mostly similar gene structures. In addition, many conserved amino acids in the R2 and R3 domains of CeqMYBs by WebLogo analysis, especially tryptophan residues (W), with 3 conserved W in R2 repeat and 2 conserved W in R3 repeat. Combining promoter and GO annotation analysis, speculated on the various biological functions of CeqMYBs, thus 32 MYB genes were selected to further explore its response to salt stress by using qPCR analysis technique. Most CeqMYB genes were differentially regulated following multiple salt treatments.ConclusionsSeven genes (CeqMYB164, CeqMYB4, CeqMYB53, CeqMYB32, CeqMYB114, CeqMYB71 and CeqMYB177) were assigned to the “response to salt stress” by GO annotation. Among them, the expression level of CeqMYB4 was up-regulated under various salt treatments, indicating CeqMYB4 might participated in the response to salt stress. Our results provide important information for the biological function of C. equisetifolia, as well as offer candidate genes for further study of salt stress mechanism.

Highlights

  • MYB transcription factors are a kind of DNA binding protein that can interact with the promoter region

  • Identification of MYB genes in C. equisetifolia The candidate genes with typical MYB or MYB-like domains were preliminarily screened from Casuarina genomic database according to the Hidden Markov Model (HMM) profile of the MYB domain

  • The predicted subcellular localization data (Table S2) showed that most CeqMYB proteins were predicted to be expressed in the nucleus, while some were localized to chloroplasts (CeqMYB41, CeqMYB114 and CeqMYB148), mitochondria (CeqMYB37), and cytoplasm (CeqMYB5 and CeqMYB23)

Read more

Summary

Introduction

MYB transcription factors are a kind of DNA binding protein that can interact with the promoter region. Members of MYB TFs are widely involved in plant growth and development, secondary metabolism, stress response, and hormone signal transduction. MYB TFs play an important role in plant growth and development. R2R3-MYB TFs had been certified to be widely involved in the regulation of plant secondary metabolism, and acted a key role in the regulation of plant cell differentiation and organ formation [4, 6, 7]. Mu et al found that R2R3 TF AtMYB59 could regulate the cell cycle and root growth of Arabidopsis thaliana [9] and JcMYB1 (R2R3-MYB) played an important role in the abiotic stress response [10]. Previous study had found that the expression of AtMYB2 was up-regulated in late plant development and participated in the regulation of whole plant senescence [16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call