Abstract

Diabetes mellitus causes an increased incidence of congenital heart malformations. However, the pathogenesis and potential epigenetic mechanism involved in this process are unclear. In this study, we used MethylRAD sequencing to compare changes in methylation levels in the genomic landscapes in the fetal heart in a rat model of hyperglycemia. Our results showed that methylation of CCGG/CCNGG sites were mostly enriched in intergenic regions, followed by intron, exon, upstream and the 5′ and 3′ untranslated regions. qRT-PCR results confirmed the MethylRAD sequencing findings, suggesting that abnormal CCGG/CCNGG methylation in the upstream region regulated gene expression. The differential methylation genes (DMGs) based on the CCGG and CCNGG sites in the upstream region were examined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Gene Ontology indicated that the CCGG-based DMGs involved in biological process and function were mainly related to transcription and co-SMAD binding. The CCNGG-based DMGs were mainly related to transcription and cytokine-mediated signaling pathways. Kyoto Encyclopedia of Genes and Genomes analysis indicated that CCGG-based DMGs were mainly involved in the Wnt signaling and TGF-β signaling pathways. CCNGG-based DMGs were involved in the TNF signaling and apoptosis pathways. These genes may play dominant roles in cardiomyocyte apoptosis and heart disease and require further study. These genes may also serve as potential molecular targets or diagnostic biomarkers for heart malformations under hyperglycemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call