Abstract

BackgroundDrought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs’ response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought stress and rehydration treatment at the seedling stage.ResultsA total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with 7824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up- regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA-mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response.ConclusionsThe results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.

Highlights

  • Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity

  • 19 long non-coding RNAs (lncRNAs) (17 lincRNAs and 2 natural antisense transcripts (NATs)) in foxtail millet responded to polyethylene glycol-6000 (PEG)-induced drought stress, only one of the drought-responsive lncRNA had synteny with its sorghum counterpart [40]

  • In Brassica juncea, 1614 differentially expressed lncRNAs response to heat and drought stress, and some lncRNAs were co-expressed with transcription factors (TFs) which are involved in abiotic stress response [50]

Read more

Summary

Introduction

Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Qin et al (2017) identified an Arabidopsis lncRNA, drought-induced lncRNA (DRIR), which responds to drought and salt stress. Numerous lncRNAs involved in the regulation of gene expression in response to stress have been identified and characterized in Brassica [43,44,45,46]. In Brassica rapa L., 549 lncRNAs were identified significantly altered their expression in response to cold treatment, and short-term cold treatment induced natural antisense transcripts (NATs) in BrFLC and BrMAF genes which are involved in vernalization were identified [48]. In Brassica juncea, 1614 differentially expressed lncRNAs response to heat and drought stress, and some lncRNAs were co-expressed with TFs which are involved in abiotic stress response [50]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.