Abstract

Although HSF1 plays an important role in the cellular response to proteotoxic stressors, little is known about the structure and function of the human HSF1 signaling network under both stressed and unstressed conditions. In this study, we used a combination of chromatin immunoprecipitation microarray analysis and time course gene expression microarray analysis with and without siRNA-mediated inhibition of HSF1 to comprehensively identify genes regulated directly and indirectly by HSF1. The correlation between promoter binding and gene expression was not significant for all genes bound by HSF1, suggesting that HSF1 binding per se is not sufficient for expression. However, the correlation with promoter binding was significant for genes identified as HSF1-regulated following siRNA knockdown. Among promoters bound by HSF1 following heat shock, a gene ontology analysis showed significant enrichment only in categories related to protein folding. In contrast, analysis of the extended HSF1 signaling network following siRNA knockdown showed enrichment in a variety of categories related to protein folding, anti-apoptosis, RNA splicing, ubiquitinylation and others, highlighting a complex transcriptional program regulated directly and indirectly by HSF1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.