Abstract

Chromatin immunoprecipitation sequencing (ChIP-seq) is a powerful and widely used molecular technique for mapping whole genome locations of transcription factors (TFs), chromatin regulators, and histone modifications, as well as detecting entire genomes for uncovering TF binding patterns and histone posttranslational modifications. Chromatin-modifying activities, such as histone methylation, are often recruited to specific gene regulatory sequences, causing localized changes in chromatin structures and resulting in specific transcriptional effects. The rice blast is a devastating fungal disease on rice throughout the world and is a model system for studying fungus-plant interaction. However, the molecular mechanisms in how the histone modifications regulate their virulence genes in Magnaporthe oryzae remain elusive. More researchers need to use ChIP-seq to study how histone epigenetic modification regulates their target genes. ChIP-seq is also widely used to study the interaction between protein and DNA in animals and plants, but it is less used in the field of plant pathology and has not been well developed. In this paper, we describe the experimental process and operation method of ChIP-seq to identify the genome-wide distribution of histone methylation (such as H3K4me3) that binds to the functional target genes in M. oryzae. Here, we present a protocol to analyze the genome-wide distribution of histone modifications, which can identify new target genes in the pathogenesis of M. oryzae and other filamentous fungi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.