Abstract

In mammals, the adrenal gland, testis and ovary arise from a common progenitor tissue known as the urogenital ridge (UGR). This small population of cells will adopt a number of different cell fates following sex determination, including forming the precursors of somatic cells (such as Sertoli and granulosa cells) and steroidogenic cells. In addition, these tissues also contain the Wolffian and Müllerian ducts that later form components of the reproductive tracts. A potential mechanism to maintain developmental plasticity of the UGR until gonad formation is complete, is through the epigenetic modification of histone proteins.In order to provide a resource for future studies, we used chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) for two histone modifications, H3K4me3 and H3K27me3, in the E11.5 mouse UGR. These marks are both known to reflect the active, repressive or a poised chromatin state. We found that enrichment for each histone mark reflected transcriptional activity in precursor cells of the developing gonad. From the analysis of potential enhancer/regulator peak regions for DNA binding motifs, we identified several candidate transcription factors that may contribute to gonadal cell lineage specification. We additionally identified signaling pathway genes that are targeted by both chromatin modifications. Together, these datasets provide a useful resource for investigating gene regulatory networks functioning during UGR development at E11.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.