Abstract
Family-1 UDP-glycosyltransferases (UGTs) are the most common and functional glycosyltransferases in the plant world. UGT is closely related to plant growth and the response to abiotic stress. However, despite systematic research, our understanding of potato UGT genes is still unclear. In this study, we identified 174 potato UGT proteins based on their conserved plant secondary product glycosyltransferase (PSPG) motifs. Phylogenetic analyses were used to compare these proteins with Arabidopsis UGTs and other plant UGTs, and it was found that they could be clustered into 18 distinct groups. Patterns of intron gain/loss and intron phases within potato UGTs revealed highly conserved intron insertion events. The promoter cis-elements of these 174 UGT genes were systematically investigated. The promoter regions of these UGT genes are known to contain various classes of cis-acting compounds. These include elements that are light-responsive, phytohormone-responsive, and stress-responsive. Transcriptome data analysis established that 25, 10, 6, and 4 of these 174 UGT genes were specifically expressed in leaves, roots, stolons, and young tubers, respectively. The mannitol-treated transcriptomic data showed thirty-eight UGT genes were significantly upregulated. The quantitative real-time PCR results showed that the four genes were all responsive to osmotic stress under a 10% PEG6000 treatment. The results of our study provide a basis for clarifying the molecular mechanism of potato osmotic stress resistance and better understanding its function in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.