Abstract

Aldehyde dehydrogenases (ALDHs) are NAD(P)-dependent enzymes that oxidize aliphatic and aromatic aldehydes. They play crucial roles in various biological processes and plant responses to stress. The impact of high temperatures on jujube quality and yield has been well documented. Nevertheless, the involvement of ALDHs in the response to heat stress remains poorly understood. This study aimed to identify ZjALDHs in the jujube genome (Ziziphus jujuba var. spinosa) and conducted in silico analyses. Phylogenetic analyses indicated that ALDHs in plants, including jujube, can be divided into ten families, and members from the same family share conserved gene and protein structures. Quantitative real-time PCR (qRT-PCR) and β-glucuronidase (GUS) histochemical staining were used to analyze the expression patterns of ZjALDHs in response to elevated temperatures. We identified a ZjALDH (ZjALDH3F3) gene displaying a significant upregulation and down-regulation, respectively in heat-resistant (HR) and heat-sensitive (HS) jujube in response to heat treatments. Such specific responses are probably attributed to the different heat-responsive cis-elements of ZjALDH3F3 in HR and HS jujubes. ZjALDH3F3 over-expressed in tobacco increased heat tolerance, as evidenced by the reduced accumulation of reactive oxygen species (ROS) and elevated activity of antioxidant enzymes. The qRT-PCR results indicated that the expression of antioxidant enzymes, abscisic acid (ABA), and stress-responsive genes was enhanced in transgenic tobacco. This study sheds novel light on the function of ZjALDHs in heat resistance of jujube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.