Abstract
The glyoxalase pathway, consisting of glyoxalase I (GLYI) and glyoxalase II (GLYII), is an enzymatic system that converts cytotoxic methylglyoxal to non-toxic S-D-lactoylglutathione. Although the GLY gene family has been analyzed in Arabidopsis, rice, grape, cabbage, and soybean, cucumber studies are lacking. Here, we analyzed the cucumber GLY gene family, identifying 13 CsGLYI and 2 CsGLYII genes. Furthermore, we investigated the physicochemical properties, phylogenetic relationships, chromosomal localization and colinearity, gene structure, conserved motifs, cis-regulatory elements, and protein–protein interaction networks of the CsGLY family. They were primarily localized in the cytoplasm, chloroplasts, and mitochondria, with a minor presence in the nucleus. The classification of CsGLYI and CsGLYII genes into five classes closely resembled the homologous genes in Arabidopsis and soybean. Additionally, hormone-responsive elements dominated the promoter region of GLY genes, alongside light- and stress-responsive elements. The predicted interaction proteins of CsGLYIs and CsGLYIIs exerted a significant role in cellular respiration, amino acid synthesis, and metabolism, as well as methylglyoxal catabolism. In addition, the expression profiles of GLY genes were distinct in different tissues of cucumber as well as under diverse abiotic stresses. This study is conducive to the further exploration of the functional diversity among glyoxalase genes and the mechanisms of stress responses in cucumber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.