Abstract

BackgroundThe FK506-binding proteins (FKBPs) play diverse roles in numerous critical processes for plant growth, development, and abiotic stress responses. However, the FKBP gene family in the important fruit crop apple (Malus × domestica Borkh.) has not been studied as thoroughly as in other species. Our research objective was to investigate the mechanisms by which apple FKBPs enable apple plants to tolerate the effects of abiotic stresses.ResultsUsing bioinformatics-based methods, RT-PCR, and qRT-PCR technologies, we identified 38 FKBP genes and cloned 16 of them in the apple genome. The phylogenetic analysis revealed three major groups within that family. The results from sequence alignments, 3-D structures, phylogenetics, and analyses of conserved domains indicated that apple FKBPs are highly and structurally conserved. Furthermore, genomics structure analysis showed that those genes are also highly and structurally conserved in several other species. Comprehensive qRT-PCR analysis found various expression patterns for MdFKBPs in different tissues and in plant responses to water-deficit and salt stresses. Based on the results from interaction network and co-expression analyses, we determined that the pairing in the MdFKBP62a/MdFKBP65a/b-mediated network is involved in water-deficit and salt-stress signaling, both of which are uniformly up-regulated through interactions with heat shock proteins in apple.ConclusionsThese results provide new insight for further study of FKBP genes and their functions in abiotic stress response and multiple metabolic and physiological processes in apple.

Highlights

  • The FK506-binding proteins (FKBPs) play diverse roles in numerous critical processes for plant growth, development, and abiotic stress responses

  • Immunophilins are divided into two categories: cyclophilins, which can bind to CsA; and FK506-binding proteins (FKBPs), which can bind to FK506 and rapamycin [2,3,4]

  • Identification and annotation of apple FKBP genes To identify the genes in the apple genome that encode FK506-binding proteins, we conducted a Basic local alignment search tool-protein (BlastP) of the apple genome database and identified 42 putative FKBP family genes in that genome

Read more

Summary

Introduction

The FK506-binding proteins (FKBPs) play diverse roles in numerous critical processes for plant growth, development, and abiotic stress responses. Immunophilins are divided into two categories: cyclophilins, which can bind to CsA; and FK506-binding proteins (FKBPs), which can bind to FK506 and rapamycin [2,3,4]. All FKBPs contain at least one FK506-binding domain (FKBd) of approximately 110 amino acids that provides the active site for PPIase catalysis and the receptor site for proline and proline analogues [1, 2, 7]. Members of FKBP families in plants range significantly in size, Dong et al BMC Genomics (2018) 19:707 from single-domain (SD) isoforms that comprise a single FKBd to multiple-domain (MD) proteins that contain up to three FKBds, along with a tetratricopeptide repeat (TPR), C-terminal calmodulin-binding domains, or a coiled–coil domain [1, 2, 6,7,8]. Most FKBP subcellular locations are expressed in the chloroplast thylakoid [13,14,15]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.