Abstract

We describe a genome-wide screening strategy to identify target genes whose modulation increases the capacity of a cell to produce recombinant adeno-associated viral (AAV) vector. Specifically, a single-guide RNA (sgRNA) library for a CRISPR-based genome-wide transcriptional activation screen was inserted into an AAV vector, and iterative rounds of viral infection and rescue in HEK293 producer cells enabled the enrichment of sgRNAs targeting genes whose upregulation increased AAV production. Numerous gain-of-function targets were identified, including spindle and kinetochore associated complex subunit 2 (SKA2) and inositol 1, 4, 5-trisphosphate receptor interacting protein (ITPRIP). Furthermore, individual or combinatorial modulation of these targets in stable producer cell lines increased vector genomic replication and loading into AAV virions, resulting in up to a 3.8-fold increase in AAV manufacturing capacity. Our study offers an efficient approach to engineer viral vector producer cell lines and enhances our understanding of the roles of SKA2 and ITPRIP in AAV packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call