Abstract
SummaryBoswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype—dominating most resin-productive trees. Further, the stem transcriptome revealed that wounding concurrently activates phytohormones signaling, cell wall fortification, and resin terpenoid biosynthesis pathways leading to the synthesis of boswellic acid—a key chemotaxonomic marker of Boswellia. The sequence datasets reported here will serve as a foundation to investigate the genetic determinants of frankincense and other resin-producing species in Burseraceae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.