Abstract
This study suggested that cell-cycle kinetics, DNA replication and DNA repair react to magnetic fields differently. During their culture growth cycle, which lasted about five days, Friend erythroleukemia cells were either kept in the absence of magnetic fields in a magnetically shielded room or irradiated in a solenoid with 70 μT at 50 Hz plus 45 μT DC of the Earth: some cells grew without inducer of in vitro differentiation; others were induced to differentiate hemoglobin through dimethylsulfoxide. It emerged that, during a single culture growth cycle, while proliferation was slightly accelerated by the magnetic-field irradiation achieved in the solenoid both in undifferentiating and dimethylsulfoxide-differentiating cells, DNA replication did not appear to significantly depend on the magnetic-field deprivation achieved in the magnetically shielded room. However, as a result of a 318-day long magnetic-field irradiation in the solenoid, DNA replication remained unchanged in undifferentiating cells and partially inhibited in dimethylsulfoxide-differentiating cells. Following the same long magnetic-field irradiation in the solenoid, the amount of labelled repair patches in the parental DNA strands was slightly reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.