Abstract

Genome sizes (nuclear DNA contents) were examined spectrophotometrically from ten individuals of each of five species of North American cyprinid fishes (minnows). The distributions of DNA values both within and between the five species were essentially continuous and normal. Differences between individuals within populations were significant and contributed to approximately 16 per cent of the total variation. Variation between individuals within species ranged from 4.7-13.5 per cent and averaged ca. 7.4 per cent. Variation between species ranged from 0-9.5 per cent and the average difference between any species pair was ca. 4.6 per cent. Statistical analyses showed that the methodology used was sufficient to detect significant differences in genome size as small as 2-3 per cent. Consideration of these data lead to the following tentative conclusions: (i) changes in genome size in cyprinids appear small in amount, frequent in occurrence, to involve both gains and losses of DNA, and to be cumulative and independent in effect; (ii) differences within and between cyprinid taxa are likely the result of accumulations of small changes in DNA quantity; and (iii) the primary focus of quantitative DNA variation in cyprinids is between individuals within populations. The extent of DNA quantity variation which occurs within species would appear to preclude any direct relationship between genome size variation and many of the organismal parameters (including speciation) which differentiate the five species. In short, the data suggest that a significant fraction of the cyprinid genome, perhaps more than 10 per cent, is free to vary quantitatively without phenotypic constraint or biological consequence. This fraction is considerably larger than that theoretically needed for the structural gene component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call