Abstract

The objective of this study was to evaluate the ability of a new Komagataeibacter xylinus strain in producing bacterial cellulose from glucose, mannitol and glycerol, and to assess the genome sequencing with special focus on bacterial cellulose related genes. Bacterial cellulose production during 9 days of cultivation was tested in glucose, mannitol and glycerol, respectively. Differences in the bacterial cellulose kinetic formation was observed, with a final yield of 9.47 g/L in mannitol, 8.30 g/L in glycerol and 7.57 g/L in glucose, respectively. The draft genome sequencing of K1G4 was produced, revealing a genome of 3.09 Mbp. Two structurally completed cellulose synthase operons and a third copy of the catalytic subunit of cellulose synthase were found. By using phylogenetic analysis, on the entire rRNA operon sequence, K1G4 was found to be closely related to Komagataeibacter xylinus LMG 1515T and K. xylinus K2G30. The different yields of bacterial cellulose produced on glucose, mannitol and glycerol can be correlated with the third copy of bcsAB operon harboured by K1G4, making it a versatile strain for industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.