Abstract

Nigrospora oryzae is one of several fungal pathogens known to cause brown streaks, leaf spots, and latent infections in rice. In this study, the entire 42.09-Mb genome of N. oryzae was sequenced at a depth of 169× using the Oxford Nanopore Technologies platform. The draft genome sequence was comprised of 26 scaffolds, possessed an average GC content of 58.83%, and contained a total of 10,688 protein-coding genes. Analysis of the complete genome sequence revealed that CAZyme-encoding genes account for 6.11% of all identified genes and that numerous transcription factors (TFs) associated with diverse biological processes belong predominantly to Zn-clus (22.20%) and C2H2 (10.59%) fungal TF classes. In addition, genes encoding 126 transport proteins and 3307 pathogen-host interaction proteins were identified. Comparative analysis of the previously reported N. oryzae reference strain GZL1 genome and the genome of a representative strain ZQ1 obtained here revealed 9722 colinear genes. Collectively, these findings provide valuable insights into N. oryzae genetic mechanisms and phenotypic characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call