Abstract

Algae are a broad class of photosynthetic eukaryotes that are phylogenetically and physiologically diverse. Most of the phylogenetic diversity has been inferred from 18S rDNA sequencing since there are only a few complete genomes available in public databases. Here we use ultra-long-read Nanopore sequencing to determine a gapless, telomere-to-telomere complete genome sequence of Chlorella sp. SLA-04, previously described as Chlorella sorokiniana SLA-04. Chlorella sp. SLA-04 is a green alga that grows to high cell density in a wide variety of environments – high and neutral pH, high and low alkalinity, and high and low salinity. SLA-04's ability to grow in high pH and high alkalinity media without external CO2 supply is favorable for large-scale algal biomass production. Phylogenetic analysis performed using ribosomal DNA and conserved protein sequences consistently reveal that Chlorella sp. SLA-04 forms a distinct lineage from other strains of Chlorella sorokiniana. We complement traditional genome annotation methods with high throughput structural predictions and demonstrate that this approach expands functional prediction of the SLA-04 proteome. Genomic analysis of the SLA-04 genome identifies the genes capable of utilizing TCA cycle intermediates to replenish cytosolic acetyl-CoA pools for lipid production. We also identify a complete metabolic pathway for sphingolipid anabolism that may allow SLA-04 to readily adapt to changing environmental conditions and facilitate robust cultivation in mass production systems. Collectively, this work clarifies the phylogeny of Chlorella sp. SLA-04 within Trebouxiophyceae and demonstrates how structural predictions can be used to improve annotation beyond sequence-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.