Abstract
Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status ‘Improved high quality draft’, and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
Highlights
Strain NA-128T (= DSM 44631 = ATCC 43670 = NBRC 14651) is the type strain of the species Saccharomonospora azurea [1], one of nine species currently in the genus Saccharomonospora [2]
Yoon et al [4] showed in 1999 via DNA-DNA hybridization that ‘S. caesia’ [5], which was not included on the Approved Lists [7], was a synonym of S. azurea
S. azurea and the other type strains of the genus Saccharomonospora were selected for genome sequencing in a DOE Community Sequencing Project (CSP 312) at Joint Genome Institute (JGI), because members of the genus might play a role in the primary degradation of plant material by attacking hemicellulose
Summary
S. azurea and the other type strains of the genus Saccharomonospora were selected for genome sequencing in a DOE Community Sequencing Project (CSP 312) at Joint Genome Institute (JGI), because members of the genus (which originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist and over-heated grain) might play a role in the primary degradation of plant material by attacking hemicellulose. This expectation was underpinned by the results of the analysis of the genome of S. viridis [8], one of the recently sequenced GEBA genomes [9]. We present a summary classification and a set of features for S. azurea AN-128T, together with the description of the genomic sequencing and annotation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.