Abstract

Saccharomonospora marina Liu et al. 2010 is a member of the genus Saccharomonospora, in the family Pseudonocardiaceae that is poorly characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they might play a role in the primary degradation of plant material by attacking hemicellulose. Organisms belonging to the genus are usually Gram-positive staining, non-acid fast, and classify among the actinomycetes. Here we describe the features of this organism, together with the complete genome sequence (permanent draft status), and annotation. The 5,965,593 bp long chromosome with its 5,727 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).

Highlights

  • Strain XMU15T (= DSM 45390 = KCTC 19701 = CCTCC AA 209048) is the type strain of the species Saccharomonospora marina [1], one of nine species currently in the genus Saccharomonospora [2]

  • S. marina and the other type strains of the genus Saccharomonospora were selected for genome sequencing in one of the DOE Community Sequencing Projects (CSP 312) at Joint Genome Institute (JGI), because members of the genus might play a role in the primary degradation of plant material by attacking hemicellulose

  • Number (24 in total) genes for glycosyl hydrolases (GH) belonging to 14 GH families, which were identified in the Carbon Active Enzyme Database [6]

Read more

Summary

Introduction

S. marina and the other type strains of the genus Saccharomonospora were selected for genome sequencing in one of the DOE Community Sequencing Projects (CSP 312) at Joint Genome Institute (JGI), because members of the genus (which originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist, over-heated grain and ocean sediment) might play a role in the primary degradation of plant material by attacking hemicellulose. This expectation was underpinned by the results of the analysis of the genome of S. viridis [4], one of the recently sequenced GEBA genomes [5]. The S. viridis genome, the first sequenced genome from the genus Saccharomonospora, contained an unusually large

The Genomic Standards Consortium
Classification and features
Genome project history
Geographic location
Sequencing platforms Sequencing coverage Assemblers
Growth conditions and DNA isolation
Genome sequencing and assembly
Genome annotation
Findings
Genome properties
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call