Abstract

Enterococci are commensals of the human intestinal tract. Their use as probiotics is supported by their ability to confer several health benefits and eliminate foodborne pathogens but is controversial due to the presence of virulence and antibiotic resistance traits. To use them as probiotics requires thorough research to establish their safety. Here, we sequenced the whole genome of a newly isolated Enterococcus durans MN187066 and used a suite of bioinformatics tools to analyze its beneficial probiotic traits as well as antimicrobial resistance and virulence genes. The whole genome had a length of 2 978 152bp, and an average G+C content of 37.88%. The bopABCD genes involved in biofilm formation were annotated in the genome. However, further analysis showed that these genes are mostly helpful in strengthening their colonization and establishment in the gastrointestinal tract. Also, we identified secondary metabolite gene clusters and the bacteriocins Enterolysin A and Enterocin P. We also identified repUS15 and rep1 replicons and genes that were associated with antimicrobial resistance and virulence. Nevertheless, vancomycin resistance genes were not detected. Our results show that the Ent. durans strain MN187066 can be considered a nontoxigenic strain and produces beneficial metabolites that are critical for their success as probiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.