Abstract
BackgroundAschersonia badia [(Ab) Teleomorph: Hypocrella siamensis] is an entomopathogenic fungus that specifically infects scale insects and whiteflies. We present the whole genome sequence of Ab and its comparison with two clavicipitaceous fungi Metarhizium robertsii (MR: generalist entomopathogen) and M. acridum (MAC: acridid-specific entomopathogen) that exhibit variable host preferences. Here, through comparative analysis of pathogen-host interacting genes, carbohydrate active enzymes, secondary metabolite biosynthesis genes, and sexuality genes, we explore the proteins with possible virulence functions in clavicipitaceous fungi. Comprehensive overview of GH18 family chitinases has been provided to decipher the role of chitinases in claviceptaceous fungi that are either host specific or generalists.ResultsWe report the 28.8 Mb draft genome of Ab and its comparative genome analysis with MR and MAC. The comparative analyses suggests expansion in pathogen-host interacting gene families and carbohydrate active enzyme families in MR, whilst their contraction in Ab and MAC genomes. The multi-modular NRPS gene (dtxS1) responsible for biosynthesis of the secondary metabolite destruxin in MR is not conserved in Ab, similar to the specialist pathogen MAC. An additional siderophore biosynthetic gene responsible for acquisition of iron was identified in MR. Further, the domain survey of chitinases suggest that the CBM50 (LysM) domains, which participate in chitin-binding functions, were not observed in MAC, but were present in Ab and MR. However, apparent differences in frequency of CBM50 domains associated with chitinases of Ab and MR was identified, where MR chitinases displayed a higher proportion of associated CBM50 domains than Ab chitinases.ConclusionsThis study suggests differences in distribution of dtxS1 and chitinases in specialists (Ab and MAC) and generalists (MR) fungi. Our analysis also suggests the presence of a siderophore biosynthetic gene in the MR genome which perhaps aids in enhanced virulence potential and host range. The variation in association of CBMs, being higher in generalists (MR) and lower in specialists (Ab and MAC) fungi may further be responsible for the differences in host affiliation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2710-6) contains supplementary material, which is available to authorized users.
Highlights
Aschersonia badia [(Ab) Teleomorph: Hypocrella siamensis] is an entomopathogenic fungus that infects scale insects and whiteflies
Ab Microbial Type Culture Collection (MTCC) 10142 strain was clustered within the Hypocrella clade whereas M. acridum (MAC) and Metarhizium robertsii (MR) were clustered within Metacordyceps clade (ML, Maximum Parsimony (MP) and NJ analysis parameters presented 100 % support values) validating the phylogenetic identification of the organisms under study
The phylogenetic tree displayed the paraphyletic occurrence of family Clavicipitaceae into clades A, B and C, viz., Clavicipitaceae s.s., Ophiocordycipitaceae and Cordycipitaceae, respectively and the grouping of Clavicipitaceae s.s. clade into four lineages: three specific to scale insects and whiteflies, Hypocrella, Torrubiella and Claviceps; with one as a generalist, Metacordyceps (Additional file 3: Figure S1)
Summary
Aschersonia badia [(Ab) Teleomorph: Hypocrella siamensis] is an entomopathogenic fungus that infects scale insects and whiteflies. Aschersonia spp. are insect-pathogenic fungi that infect whiteflies (Homoptera, Aleyrodidae) and scale insects (Homoptera, Coccidae). These are predominately found in tropical and sub-tropical areas. Aschersonia spp. show adaptation to low relative humidity [7], perseverance on plant exteriors [8], and compatibility with insect parasitoids [9] in the management of whitefly pests These fungi take a long time to grow in culture, and are not effective against all host stages and this has limited their successful exploitation against insect pests [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.