Abstract

Broad-acting transcription factors (TFs) in bacteria form regulons. Here, we present a 4-step method to fully reconstruct the leucine-responsive protein (Lrp) regulon in Escherichia coli K-12 MG 1655 that regulates nitrogen metabolism. Step 1 is composed of obtaining high-resolution ChIP-chip data for Lrp, the RNA polymerase and expression profiles under multiple environmental conditions. We identified 138 unique and reproducible Lrp-binding regions and classified their binding state under different conditions. In the second step, the analysis of these data revealed 6 distinct regulatory modes for individual ORFs. In the third step, we used the functional assignment of the regulated ORFs to reconstruct 4 types of regulatory network motifs around the metabolites that are affected by the corresponding gene products. In the fourth step, we determined how leucine, as a signaling molecule, shifts the regulatory motifs for particular metabolites. The physiological structure that emerges shows the regulatory motifs for different amino acid fall into the traditional classification of amino acid families, thus elucidating the structure and physiological functions of the Lrp-regulon. The same procedure can be applied to other broad-acting TFs, opening the way to full bottom-up reconstruction of the transcriptional regulatory network in bacterial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.