Abstract
Lactic acid is widely used in many industries, especially in the production of poly-lactic acid. Bacillus coagulans is a promising lactic acid producer in industrial fermentation due to its thermophilic property. In this study, we developed the first genome-scale metabolic model (GEM) of B. coagulans iBag597, together with an enzyme-constrained model ec-iBag597. We measured strain-specific biomass composition and integrated the data into a biomass equation. Then, we validated iBag597 against experimental data generated in this study, including amino acid requirements and carbon source utilization, showing that simulations were generally consistent with the experimental results. Subsequently, we carried out chemostats to investigate the effects of specific growth rate and culture pH on metabolism of B. coagulans. Meanwhile, we used iBag597 to estimate the intracellular metabolic fluxes for those conditions. The results showed that B. coagulans was capable of generating ATP via multiple pathways, and switched among them in response to various conditions. With ec-iBag597, we estimated the protein cost and protein efficiency for each ATP-producing pathway to investigate the switches. Our models pave the way for systems biology of B. coagulans, and our findings suggest that maintaining a proper growth rate and selecting an optimal pH are beneficial for lactate fermentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.