Abstract

Background: Methanogens utilize low carbon molecules in anaerobic environments and produce CH4 that serves as a key component in the global carbon cycle in the atmosphere. Genome-scale metabolic modeling is a proficient computational tool for integrative analysis of their cellular and metabolic processes. Thus, genome-scale models of methanogens have gained great importance in environmental and biotechnological applications. Keywords: Genome-scale model, rumen methanogens, global warming, reverse methanogenesis, methane mitigation, methane cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.