Abstract

BackgroundDeep-sea hydrothermal vents represent unique ecosystems that redefine our understanding of the limits of life. They are widely distributed in deep oceans and typically form along mid-ocean ridges. To date, the hydrothermal systems in the Mid-Atlantic Ridge south of 14°S remain barely explored, limiting our understanding of the microbial community in this distinct ecosystem. The Deyin-1 is a newly discovered hydrothermal field in this area. By applying the metagenomic analysis, we aim at gaining much knowledge of the biodiversity and functional capability of microbial community inhabiting this field.ResultsIn the current study, 219 metagenomic assembled genomes (MAGs) were reconstructed, unveiling a diverse and variable community dominated by Bacteroidetes, Nitrospirae, Alpha-, Delta-, and Gammaproteobacteria in the active and inactive chimney samples as well as hydrothermal oxide samples. Most of these major taxa were potentially capable of using reduced sulfur and hydrogen as primary energy sources. Many members within the major taxa exhibited potentials of metabolic plasticity by possessing multiple energy metabolic pathways. Among these samples, different bacteria were found to be the major players of the same metabolic pathways, further supporting the variable and functionally redundant community in situ. In addition, a high proportion of MAGs harbored the genes of carbon fixation and extracellular carbohydrate-active enzymes, suggesting that both heterotrophic and autotrophic strategies could be essential for their survival. Notably, for the first time, the genus Candidatus Magnetobacterium was shown to potentially fix nitrogen, indicating its important role in the nitrogen cycle of inactive chimneys. Moreover, the metabolic plasticity of microbes, diverse and variable community composition, and functional redundancy of microbial communities may represent the adaptation strategies to the geochemically complex and fluctuating environmental conditions in deep-sea hydrothermal fields.ConclusionsThis represents the first assembled-genome-based investigation into the microbial community and metabolism of a hydrothermal field in the Mid-Atlantic Ridge south of 14°S. The findings revealed that a high proportion of microbes could benefit from simultaneous use of heterotrophic and autotrophic strategies in situ. It also presented novel members of potential diazotrophs and highlighted the metabolic plasticity and functional redundancy across deep-sea hydrothermal systems.1xuPJCgoosKrCyCUyp1or3Video abstract

Highlights

  • Deep-sea hydrothermal vents represent unique ecosystems that redefine our understanding of the limits of life

  • As summarized in several reviews, the application of high-throughput sequencing technologies suggested that microorganisms in deep-sea hydrothermal ecosystems utilized all known biological carbon fixation pathways, including the Calvin-Benson (CBB) cycle, the reductive or reverse tricarboxylic acid cycle, the acetyl CoA pathway, the 3-hydroxypropionate bicycle, the dicarboxylate/4-hydroxybutyrate cycle, and the 3-hydroxypropionate/4-hydroxybutyrate cycle [18,19,20]

  • Hydrothermal fluids are enriched with reduced sulfur compounds, which are identified as a predominant energy source for hydrothermal systems [11]

Read more

Summary

Introduction

Deep-sea hydrothermal vents represent unique ecosystems that redefine our understanding of the limits of life. As summarized in several reviews, the application of high-throughput sequencing technologies suggested that microorganisms in deep-sea hydrothermal ecosystems utilized all known biological carbon fixation pathways, including the Calvin-Benson (CBB) cycle, the reductive or reverse tricarboxylic acid (rTCA) cycle, the acetyl CoA pathway, the 3-hydroxypropionate bicycle, the dicarboxylate/4-hydroxybutyrate cycle, and the 3-hydroxypropionate/4-hydroxybutyrate cycle [18,19,20]. These microorganisms have been proven to harness energy by oxidizing chemically reduced compounds from vent fluids, such as sulfide, hydrogen, methane, and metal ions [21]. Previous research provided glimpses into the metabolic potentials of bacteria in deep-sea hydrothermal systems, investigation of the metabolic network of the whole microbial community in hydrothermal fields is lacking, limiting our understanding of the microbial element cycle in the deep-sea hydrothermal fields

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call