Abstract

Two porcine rotavirus strains (CN86 and CC86) isolated during an epidemiological survey of diarrhoea in swine in Argentina were studied because of several unique characteristics. Both these strains were isolated and cloned from the same faecal sample and the electrophoretic migration of 10 of their 11 genomic dsRNA genomic segments in polyacrylamide gels was identical, but strain CC86 had a supershort electropherotype. We analysed biochemical, serological and biological properties of both viruses. In vitro translation of genome segment 11 RNAs showed that both viruses produced a polypeptide with an apparent Mr of 26K. No differences in any of the other virus-induced proteins made in infected MA104 cells were found on one- and two-dimensional gels for either strain. In addition, the serotype and the subgroup specificities of both viruses were identical (group A, subgroup I, serotype 5). These results suggest that the rearranged strain was probably generated from the standard one and that the coding capacity of the rearranged segment was conserved. Consistent with this hypothesis, primer extension analysis revealed that the supershort strain had a rearrangement involving partial duplication of genomic segment 11. Biological studies showed differences between these viruses. The rearranged strain (CC86) produced larger plaques in monolayers of MA104 cells and outgrew the standard strain (CN86) when cells were coinfected with both viruses at different relative concentrations and different m.o.i. The possibility that large plaque formation and efficient virus replication can be influenced by the products of genomic segment 11, in addition to segment 4, is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.