Abstract

Wolbachia has long been known to share an endosymbiotic relationship with its host as an obligate intracellular organism. Wolbachia diversity as different supergroups is found to be host-specific in most cases except a few, where the host species is seen to accommodate multiple strains. Besides, the Wolbachia genome must have undergone several changes in response to the evolving host genome in order to adapt and establish a strong association with its host, thus making a distinctive Wolbachia-host alliance. The present study focusses on four novel genome assembly and genome-wide sequence variations of Indian Wolbachia strains, i.e. wMel and wRi isolated from two different Drosophila hosts. The genome assembly has an average size of ~ 1.1Mb and contains ~ 1100 genes, which is comparable with the previously sequenced Wolbachia genomes. The comparative genomics analysis of these genomes and sequence-wide comparison of some functionally significant genes, i.e. ankyrin repeats, Wsp and T4SS, highlight their sequence similarities and dissimilarities, further supporting the strain-specific association of Wolbachia to its host. Interestingly, some of the sequence variations are also found to be restricted to only Indian Wolbachia strains. Further analysis of prophage and their flanking regions in the Wolbachia genome reveals the presence of several functional genes which may assist the phage to reside inside the bacterial host, thus providing a trade-off for the endosymbiont-host association. Understanding this endosymbiont genome in different eco-geographical conditions has become imperative for the recent use of Wolbachia in medical entomology as a vector-control agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call