Abstract

Elizabethkingia miricola is a Gram-negative non-fermenting rod emerging as a life-threatening human pathogen. The multidrug-resistant (MDR) carbapenemase-producing clinical isolate E. miricola EM_CHUV was recovered in the setting of severe nosocomial pneumonia. In this study, the genome of E. miricola EM_CHUV was sequenced and a functional analysis was performed, including a comparative genomic study with Elizabethkingia meningoseptica and Elizabethkingia anophelis. The resistome of EM_CHUV revealed the presence of a high number of resistance genes, including the presence of the blaGOB-13 and blaB-9 carbapenemase-encoding genes. Twelve mobility genes, with only two of them located in the proximity of resistance genes, and four potential genomic islands were identified in the genome of EM_CHUV, but no prophages or CRISPR sequences. Ten restriction–modification system (RMS) genes were also identified. In addition, we report the presence of a putative conjugative plasmid (pEM_CHUV) that does not encode any antibiotic resistance genes. Altogether, these findings point towards a limited number of DNA exchanges with other bacteria and suggest that multidrug resistance is an intrinsic trait of E. miricola owing to the presence of a high number of resistance genes within the bacterial core genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call