Abstract

The Acidianus bottle-shaped virus, ABV, infects strains of the hyperthermophilic archaeal genus Acidianus and is morphologically distinct from all other known viruses. Its genome consists of linear double-stranded DNA, containing 23,814 bp with a G + C content of 35%, and it exhibits a 590-bp inverted terminal repeat. Of the 57 predicted ORFs, only three produced significant matches in public sequence databases with genes encoding a glycosyltransferase, a thymidylate kinase and a protein-primed DNA polymerase. Moreover, only one homologous gene is shared with other sequenced crenarchaeal viruses. The results confirm the unique nature of the ABV virus, and support its assignment to the newly proposed viral family the Ampullaviridae. Exceptionally, one region at the end of the linear genome of ABV is similar in both gene content and organization to corresponding regions in the genomes of the bacteriophage ϕ29 and the human adenovirus. The region contains the genes for a putative protein-primed DNA polymerase, and a small putative RNA with a predicted secondary structure closely similar to that of the prohead RNA of bacteriophage ϕ29. The apparent similarities in the putative mechanisms of DNA replication and packaging of ABV to those of bacterial and eukaryal viruses are most consistent with the concept of a primordial gene pool as a source of viral genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.