Abstract

Sesquiterpenoids served as an important source for natural product drug discovery. Although genome mining approaches have revealed numerous novel sesquiterpenoids and biosynthetic enzymes, the comprehensive landscape of fungal sesquiterpene synthases (STSs) remains elusive. In this study, 123 previously reported fungal STSs were subjected to phylogenetic analysis, resulting in the identification of a fungi-specific STS family known as trichodiene synthase-like sesquiterpene synthases (TDTSs). Subsequently, the application of hidden Markov models allowed the discovery of 517 TDTSs from our in-house fungi genome library of over 400 sequenced genomes, and these TDTSs were defined into 79 families based on a sequence similarity network. Based on the novelty of protein sequences and the completeness of their biosynthetic gene clusters, 23 TDTS genes were selected for heterologous expression in Aspergillus oryzae. In total, 10 TDTSs were active and collectively produced 12 mono- and sesquiterpenes, resulting in the identification of the first chamipinene synthase, as well as the first fungi-derived cedrene, sabinene, and camphene synthases. Additionally, with the guidance of functionally characterized TDTSs, we found that TDTSs in Family 1 could produce bridged-cyclic sesquiterpenes, while those in Family 2 could synthesize spiro- and bridged-cyclic sesquiterpenes. Our research presents a new avenue for the genome mining of fungal sesquiterpenoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call