Abstract
Beneficial microorganisms are widely used in agriculture for control of plant pathogens but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties, but potential pathogenic risk. A panel of 64 B. ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B. ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite, cepacin, was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B. ambifaria maintained biopesticidal protection and overall fitness in soil after deletion of its third replicon, a non-essential plasmid associated with virulence in B. cepacia complex bacteria. Removal of the third replicon reduced B. ambifaria persistence in a murine respiratory infection model. Here we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.