Abstract

Transposable elements are well known for their ability to generate large- and small-scale rearrangements of the sequences flanking their insertion sites. These include deletions, inversions, and duplications. Tam3, a transposon from the Snapdragon (Antirrhinum majus), is highly active in the generation of such rearrangements. We have analysed a number of Tam3-induced rearrangements at the nivea (niv) locus by Southern blotting, cloning, and sequence determination. The data obtained from these analyses have led to an understanding of the mechanisms by which these complex alleles were formed. We have shown that the primary rearrangements usually occur without excision of the element and therefore result from aberrant transposition attempts. Subsequent rearrangements may occur on excision of the element. Finally, we suggest how the analysis of such rearrangements may not only provide information about Tam3 transposition but also show how transposon-induced rearrangements may influence the structure and function of the genome as a whole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.