Abstract

By studying viruses one may begin to understand how static genomes can define dynamic processes of development. This talk will describe some of the approaches we are taking, using computer simulations and laboratory experiments, to account for the many molecular-level processes and interactions that occur when a common bacterium, E. coli, is infected by one of its viruses, phage T7. We accounted for processes of phage genome entry, transcription, translation, and DNA replication, including protein-DNA and protein-protein regulatory interactions, and we predicted the dynamics of phage progeny formation. The simulations have enabled us to identify limiting host-cell resources in phage growth, discover novel anti-viral strategies, and suggest frameworks for mining data from global mRNA and protein studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.